Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2418, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499601

RESUMEN

Synthetic biologists seek to engineer intelligent living systems capable of decision-making, communication, and memory. Separate technologies exist for each tenet of intelligence; however, the unification of all three properties in a living system has not been achieved. Here, we engineer completely intelligent Escherichia coli strains that harbor six orthogonal and inducible genome-integrated recombinases, forming Molecularly Encoded Memory via an Orthogonal Recombinase arraY (MEMORY). MEMORY chassis cells facilitate intelligence via the discrete multi-input regulation of recombinase functions enabling inheritable DNA inversions, deletions, and genomic insertions. MEMORY cells can achieve programmable and permanent gain (or loss) of functions extrachromosomally or from a specific genomic locus, without the loss or modification of the MEMORY platform - enabling the sequential programming and reprogramming of DNA circuits within the cell. We demonstrate all three tenets of intelligence via a probiotic (Nissle 1917) MEMORY strain capable of information exchange with the gastrointestinal commensal Bacteroides thetaiotaomicron.


Asunto(s)
Escherichia coli , Recombinasas , Recombinasas/genética , Escherichia coli/genética , ADN/genética , Genómica
2.
Nat Chem Biol ; 19(6): 671-672, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36894720
3.
Nat Commun ; 13(1): 3901, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794179

RESUMEN

Bacteroides species are prominent members of the human gut microbiota. The prevalence and stability of Bacteroides in humans make them ideal candidates to engineer as programmable living therapeutics. Here we report a biotic decision-making technology in a community of Bacteroides (consortium transcriptional programming) with genetic circuit compression. Circuit compression requires systematic pairing of engineered transcription factors with cognate regulatable promoters. In turn, we demonstrate the compression workflow by designing, building, and testing all fundamental two-input logic gates dependent on the inputs isopropyl-ß-D-1-thiogalactopyranoside and D-ribose. We then deploy complete sets of logical operations in five human donor Bacteroides, with which we demonstrate sequential gain-of-function control in co-culture. Finally, we couple transcriptional programs with CRISPR interference to achieve loss-of-function regulation of endogenous genes-demonstrating complex control over community composition in co-culture. This work provides a powerful toolkit to program gene expression in Bacteroides for the development of bespoke therapeutic bacteria.


Asunto(s)
Bacteroides , Microbioma Gastrointestinal , Bacteroides/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34772815

RESUMEN

Signal processing is critical to a myriad of biological phenomena (natural and engineered) that involve gene regulation. Biological signal processing can be achieved by way of allosteric transcription factors. In canonical regulatory systems (e.g., the lactose repressor), an INPUT signal results in the induction of a given transcription factor and objectively switches gene expression from an OFF state to an ON state. In such biological systems, to revert the gene expression back to the OFF state requires the aggressive dilution of the input signal, which can take 1 or more d to achieve in a typical biotic system. In this study, we present a class of engineered allosteric transcription factors capable of processing two-signal INPUTS, such that a sequence of INPUTS can rapidly transition gene expression between alternating OFF and ON states. Here, we present two fundamental biological signal processing filters, BANDPASS and BANDSTOP, that are regulated by D-fucose and isopropyl-ß-D-1-thiogalactopyranoside. BANDPASS signal processing filters facilitate OFF-ON-OFF gene regulation. Whereas, BANDSTOP filters facilitate the antithetical gene regulation, ON-OFF-ON. Engineered signal processing filters can be directed to seven orthogonal promoters via adaptive modular DNA binding design. This collection of signal processing filters can be used in collaboration with our established transcriptional programming structure. Kinetic studies show that our collection of signal processing filters can switch between states of gene expression within a few minutes with minimal metabolic burden-representing a paradigm shift in general gene regulation.


Asunto(s)
Regulación Alostérica/genética , Procesamiento de Señales Asistido por Computador/instrumentación , Factores de Transcripción/genética , Escherichia coli/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Cinética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Ingeniería de Proteínas/instrumentación , Ingeniería de Proteínas/métodos , Biología Sintética/métodos
5.
Curr Opin Struct Biol ; 63: 115-122, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32575020

RESUMEN

Protein allostery is a vitally important protein function that has proven to be a vexing problem to understand at the molecular level. Allosteric communication is a hallmark of many protein functions. However, despite more than four decades of study the details regarding allosteric communication in protein systems are still being developed. Engineering of LacI and related homologues to confer alternate allosteric communication has shed light on the pre-requisites for the de novo design of allosteric communication. While the de novo design of an allosteric pathway and complementary functional surfaces has not been realized, this review highlights recent advances that set the stage for true predictive design for a given protein topology.


Asunto(s)
Regulación Alostérica , Sitio Alostérico , Modelos Moleculares , Ingeniería de Proteínas , Proteínas/química , Sitios de Unión , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas/genética , Transducción de Señal , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...